Matched interface and boundary method for elasticity interface problems

نویسندگان

  • Bao Wang
  • Kelin Xia
  • Guo-Wei Wei
چکیده

Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé's parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear Waves Through Non Planar Interface Between Anisotropic Inhomogeneous and Visco-Elastic Half-Spaces

A problem of reflection and transmission of a plane shear wave incident at a corrugated interface between transversely isotropic inhomogeneous and visco-elastic half-spaces is investigated. Applying appropriate boundary conditions and using Rayleigh’s method of approximation expressions for reflection and transmission coefficients are obtained for the first and second order approximation of the...

متن کامل

Second order method for solving 3D elasticity equations with complex interfaces

Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector comp...

متن کامل

An Algorithm based on Predicting the Interface in Phase Change Materials

Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM)  a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...

متن کامل

Cement-Implant Interface Fracture Failure by Crack Initiation Due to Interface Cavity Stress Concentration

Nowadays total joint replacements are widely used in the world, so in average 800,000 joint surgeries are done yearly only in Europe and North America. However implant loosening is and remains as the major issue of all implant failures and therefore causes revision surgery procedures. Studies and experiments have identified poor fixation of implants most likely is the main cause of long term im...

متن کامل

Mixed Interface Problems for Anisotropic Elastic Bodies

Three-dimensional mathematical problems of the elasticity theory of anisotropic piecewise homogeneous bodies are discussed. A mixed type boundary contact problem is considered where on one part of the interface, rigid contact conditions are given (jumps of the displacement and the stress vectors are known), while on the remaining part screen or crack type boundary conditions are imposed. The in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational and applied mathematics

دوره 285  شماره 

صفحات  -

تاریخ انتشار 2015